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Abstract

A model for minimizing the effects of skin drag and pressure drag is constructed.

We show that a simple scaling technique can be used to transform a dual, constrained

minimization problem into a volume constrained surface area minimization. We

discuss some successes and failures with implementing numerical methods for the

problem.

1 Introduction

There are several factors in the design of an airplane strut that impact the aerodynamic
performance of the aircraft. The strut, which connects the wing of the aircraft to the
engine, must be large enough to contain structural and mechanical components, but, at
the same time, aerodynamic so as to minimize fluid drag.

There are at least four types of drag which are of concern with regard to the design
of the strut [4]. The first is skin drag (Ds), which is a direct result of fluid viscosity. The
second type is pressure drag (Dp) which is due to the pressure difference between the
leading and trailing edge of the strut. The third is interference drag which decreases the
performance of the aircraft. It is caused by the disruption of the flow of air around the
wing due to the presence of the strut. The fourth is the induced drag, which is caused by
vortex shedding.

In this report we discuss procedures for minimizing the combined skin drag and pres-
sure drag. This model is formulated in §2. We review some theory for unconstrained and
constrained area minimization, which is applicable for minimizing skin drag. In §3 we
discuss the numerical methods that were used to perform the simulations, and we discuss
the results. Finally, in §4 we give some conclusions and suggest future work.
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2 Model

The first type of fluid drag that we consider is the skin drag. A common approach to
the problem of minimizing skin drag is to fix certain elements of the aerodynamic design
and then to minimize the surface area, under these constraints. In this example we will
fix the curves that define the intersections of the strut with the wing and the engine, and
we require the trailing edge to be straight line (Fig. 1). Also, since the strut conceals
structural members and electrical-mechanical plumbing, the smallest cross-section of the
strut must have an area above a certain limit.

The phenomenon of pressure drag has a much more complicated theory than that of
skin drag [6]. However, a good rule of thumb is that reducing the ratio of the thickness
of the strut, t to its chord length, c, reduces pressure drag [6]. Consider a cross-section
of the strut, shown in Fig. 2, taken parallel to the direction of flight and perpendicular
to the axis of the strut. The chord length is the distance from the leading edge of the
strut to its trailing edge, measured in the cross-section. The thickness is the maximum
thickness of the cross-section, measured perpendicular to the chord. Both c and t are
functions of the cross-section. We take as a simplifying assumption that pressure drag is
proportional to the average of t/c, t/c.

The minimization problem that we must solve is

Problem 2.0.1. Find the minimum drag

D = Ds + Dp = η1A + η2t/c, (2.1)

where η1 and η2 are constants, subject to a minimal cross-sectional area Ā.

This problem is, as posed, very difficult. We can simplify it by replacing the minimal
cross-section constraint with a fixed volume constraint, V = Vo, where Vo is the strut
volume. The second way is to eliminate the t/c calculation by re-scaling the problem.

Simulations have shown that minimizing the area subject only to a volume constraint
tends to collapse the leading edge curve towards the trailing edge, decreasing c. A bulge
forms in the midsection of the strut, increasing t. The effect is demonstrated in fig. 3.
The bulging effect can be diminished by the following process. The y-coordinates of
the boundary curves are scaled by α, where α > 1. The area is then minimized while
constraining the volume to αVo. The final step is to unscale. This process reduces the
average of t/c.

We say that a surface Sα is the α-distortion of S if its coordinates are (x, αy, z), where
(x, y, z) are the coordinates of S, with distorted curves defined similarly. The transformed
problem, which is what will be investigated in this report, is

Problem 2.0.2. Find the surface, S, whose α-distortion, Sα, is the least area surface,
given boundaries Cwα

, Ctα, Ceα
, and the volume constraint αVo.

2.1 Some Theory of Unconstrained Minimal Surfaces

In this section we give some theory of unconstrained minimal surfaces, which will serve
to introduce some important concepts. We begin by examining the following
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Figure 1: The bounding curves of the strut (top) with corresponding curves in the unit
square (bottom). The upper curve is Cw, the lower, Ce. The straight connecting curve
defines the trailing edge, and is labeled Ct.
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Figure 2: A cross-section of the strut showing the chord length, c and the thickness, t.
Note the orientation of the axes; z is out of the page.
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Figure 3: Area minimization with constrained volume. This snapshot, from a simulation
with Vo = 3 × 10−5, shows that t/c can become large when pressure drag is neglected.

Problem 2.1.1. Let Cw be the closed curve, shown in Fig. 1, that defines the intersection
of the wing with the strut, and Ce be the closed curve that defines the intersection of the
strut to the engine. The curve that defines the trailing edge of the strut is labeled Ct.
Cw and Ce are assumed to be C1 everywhere but where they meet the trailing edge (c.f.
Fig. 1). Find the minimal surface whose boundaries coincide with these curves.

Let X be a mapping of the the domain D = (0, 1) × (0, 1) into R3 (c.f Fig. 1). We
take the coordinates of D ⊂ R2 to be (u, v) and assume X = (x(u, v), y(u, v), z(u, v))T .
X is one of many parameterizations of the surface, S, which is defined by the image of
X. In this discussion we consider only regular surfaces, in the sense of [2], for which one
of the requirements is that partial derivatives of X of all orders are continuous in D. For
such a surface we can define the surface normal by

N =
Xu × Xv

‖Xu × Xv‖
. (2.2)

It shall be convenient to have the definitions of the fundamental forms

E = Xu ·Xu, F = Xu · Xv, G = Xv · Xv, (2.3)

and
e = N · Xuu, f = N ·Xuv, g = N · Xvv. (2.4)
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The area of the surface is defined by

A(S) =

∫

D

‖Xu × Xv‖ dudv =

∫

D

√
EG − F 2 dudv. (2.5)

Let S be a surface of least area, with the specified boundaries. Standard variational
calculations [3, 5] tells us that X solves the Euler equations [6]:

∂

∂u

(

GXu − FXv√
EG − F 2

)

+
∂

∂v

(

EXv − FXu√
EG − F 2

)

= 0. (2.6)

The equations of (2.6) are degenerate, because, while variations are allowed tangent and
normal to the surface, only normal variations can change the area functional. Variations
tangent to the surface change the parameterizations of the surface, but leave the area
functional invariant. Indeed, in general, the area is invariant under re-parameterization [6].
We expect, therefore, to find as a necessary condition for least area a single equation,
rather than three.

A more appropriate variation to consider is the normal variation

Φ(u, v, t) = X(u, v) + th(u, v)N(u, v), (2.7)

where h(u, v) is a smooth mapping of D to R. Assuming that the surface is of least area,
we have [2]

d

dt
A(X + thN)|t=0 = −2

∫

D

H
√

EG − F 2h dudv = 0, (2.8)

where H, the mean curvature of S, is defined by

H =
1

2

Eg − 2Ff − Ge

EG − F 2
. (2.9)

Thus H = 0 if S is of least area, i.e., H = 0 is a necessary condition for least area. By
definition a surface is minimal if and only if H = 0 [2]. This definition is a bit misleading
since H = 0 is only a critical point condition, i.e., if H = 0 the surface is a critical point
of the area functional, not necessarily the true surface of least area.

Suppose we wish to calculate the parameterization which gives the surface of least
area (or a stationary point of the area functional in general). The equation H = 0 is un-
derdetermined as a system. To overcome this difficulty we can specify a parameterization
of S with two additional equations.

We first consider the conformality conditions, which are the analogs to curve parame-
terizations by arc length, as a way of specifying the parameterization type. The mapping
X will be conformal if and only if

Xu · Xu = Xv · Xv, Xu · Xv = 0. (2.10)

Hence, we have the following [6]

Proposition 2.1.2. Let S be a regular parameterized surface, whose parameterization is
X : D 7→ R3, and assume that X is conformal. Then

Xuu + Xvv = 2λ2HN, (2.11)

where λ = Xu · Xu = Xv · Xv.
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Proof. This property follows from the calculations

Xu · (Xuu + Xvv) = 0, (2.12)

Xv · (Xuu + Xvv) = 0, (2.13)

N · (Xuu + Xvv) = 2λ2H. (2.14)

Thus, assuming X is conformal, X is minimal (H = 0) if and only if the coordinates
of X are harmonic functions of (u, v), i.e.,

∆X = 0. (2.15)

Suppose that we solve ∆X = 0 on D with the boundary conditions in a fixed paramet-
ric form. What have we found? If X is conformal then H = 0, but, in general, this cannot
be expected. In fact the nonlinearity did not disappear; it went to the boundary. When
we parameterize the boundary conditions we are pinning down the solution to ∆X = 0.
But it is unknown a priori which parameterization (of the boundary) makes X conformal.

We haven’t addressed applicability of conformality conditions to our problem. Confor-
mal maps preserve angles. Since D is a square domain the corners into which the vertices
of the square are mapped should have angle π/2. This is not the case for the most natural
mappings of D. We consider parameterizing over a domain which has four distinct ver-
tices (corners), the angles at which agree with those of the corners of the surface. This,
however, complicates the boundary conditions.

A different approach is to adopt less restrictive conditions on the parameterization.
Consider the arc length parameterization conditions

Xu · Xuu = 0, Xv ·Xvv = 0. (2.16)

These conditions do not require that angles are preserved under the mapping. If we
require our boundary curves to be parameterized by arclength then equations (2.16) and
equation (2.9) form the following square, second-order, nonlinear system of PDE’s

0 = Xu · Xuu,

0 = Xv · Xvv, (2.17)

0 = (Xu · Xu)(Xvv · Xu × Xv) − 2(Xu · Xv)(Xuv · Xu × Xv)

+ (Xv · Xv)(Xuu · Xv × Xv).
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2.2 Constrained Volume Least Area Surfaces

Adding a volume constraint to a regular surface is straightforward. Let S be the boundary
of body B. Then the volume of B, V0, is calculated as follows.

Vo =

∫

B

dxdydz

=

∫

B

∇ · (x, y, x)T dxdydz

=

∮

S

N · (x, y, z)T dS

=

∫

D

N · X||Xu × Xv|| dudv. (2.18)

This equation can be added to Eq. (2.5), using a Lagrange multiplier, to form a new
objective function that can be minimized directly.

3 Numerical Methods For Finding Least Area Sur-

faces

Here we present two numerical methods for approximating minimal surface. In the first
approach we solve system (2.17) using the finite difference method (FDM). The second
is a direct approach that minimizes the surface energy independent of parameterizations.
As this method is used in a code called Surface Evolver [1], we call it the Surface Evolver
Method (SEM).

3.1 Finite Difference Method

For the FDM, we first generate a regular Nu by Nv mesh of D̄ with spatial step sizes
hu = N−1

u in the u direction and hv = N−1
v in the v direction. Let the unknown values of

X at the interior mesh points (ui = ihu, vj = jhv) be labeled Xij where 1 ≤ i ≤ Nu − 1,
1 ≤ j ≤ Nv − 1. We replace the derivatives of (2.17) with the second-order accurate finite
differences

Xu ≈ Xi+1,j − Xi−1,j

2hu

, (3.1)

Xv ≈ Xi,j+1 − Xi,j−1

2hv

, (3.2)

Xuu ≈ Xi+1,j − 2Xi,j + Xi−1,j

h2
u

, (3.3)

Xvv ≈ Xi,j+1 − 2Xi,j + Xi,j−1

h2
v

, (3.4)

Xuv ≈ Xi+1,j+1 − Xi−1,j+1 − Xi+1,j−1 + Xi−1,j−1

4huhv

. (3.5)
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Figure 4: Results of running the FDM code to solve (2.17). The intial guess (top) is a
ruled surface. The final result (bottom) is clearly not minimal.
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Discretization of this form results in the formation of 3(Nu−1)(Nv−1) nonlinear equations
in the same number of unknowns.

As a test run, we used code based on the above scheme to calculate the (simple)
minimal surface with the following boundary conditions

X|v=0 = (u, 0, 0), X|v=1 = (u, 1, u), u ∈ [0, 1],

X|u=0 = (0, v, 0), X|u=1 = (1, v, v), v ∈ [0, 1]. (3.6)

(3.7)

The code converged rapidly to the solution provided the initial guess was reasonable.
We had no success, however, solving (2.17) with the initial conditions shown in Fig. 1.

This was initially attributed to the degree of nonlinearity of the discretized system of
equations and to the coarse mesh that was being used. We were able to rule out the latter.
The former was addressed by a continuation algorithm to globalize the convergence zone.
We used the homotopy map

(1 − αi)Xvv + αi





Xu · Xuu

Xv · Xvv

H̃



 = 0, (3.8)

with continuation parameters αi. Here H̃ is the right hand side of the third equation in
(2.17). Still the code failed to find a minimal surface.

The results shown in Fig. 4 were typical for the output of the code. The lack of success
of the code raised the question of well-posedness of (2.17). Surface Evolver confirmed that
the system (2.17) was ill-posed with the given boundary conditions.

3.2 Surface Evolver Method

The SEM is a direct method that minimizes the surface energy of a faceted surface. An
initial faceted surface with fixed boundary vertices and free interior vertices is required.
This results in a finite dimensional minimization problem for the total energy. This
problem is solved by a conjugate gradient method [1].

We ran Surface Evolver to find the unconstrained minimal surface for the boundary
conditions shown in Fig. 1. The results are displayed in Fig. 5. It is clear why the FDM
code did not converge to a minimal surface. The limiting surface is not regular. Further
iterations would produce one surface on the top and one on the bottom, with the trailing
edge providing a location for pinch-off.

3.3 Results Using Surface Evolver

An earlier observation noted that a volume constrained minimal surface had a bulge in
the midsection. This is equivalent to solving the distorted problem with a parameter of
α = 1. Increasing α had the effect of reducing the mid section bulge and, at the same
time, reducing the pressure drag term.

We began with a volume estimate Vo = 1×10−5. The estimate must be sufficient ensure
that the resulting strut can fit all the necessary structural and mechanical components.
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Figure 5: Evolution to the minimal surface. This series of images, created using Surface
Evolver, shows why the system in (2.17) is ill-posed given the boundary conditions.
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Figure 6: The α-distorted surface, near its volume-constrained minimum, shown before
(top) and after (bottom) unscaling. These figures are from a simulation with V = 3×10−5

and α = 10. This shows that the minimal surface obtained via the distortion method has
its leading edge in tact.
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We then experimented with values of α to determine which gave the right trade-off between
minimizing surface area (skin drag) and minimizing t/c (pressure drag).

Results of the method are depicted in 6. For comparison we note that for α = 1 the
leading edge has deteriorated significantly. When α = 10, however, the leading edge is in
tact. The trade-off is that the surface area has increased for α = 10 over α = 1. However,
the surface shown at the bottom of Fig. 6, the unscaled surface, has 10% less surface
area than the ruled surface (the initial guess), a significant decrease. Since a good rule of
thumb is that skin drag and pressure drag contribute about equally to the total drag, the
trade is probably a good one.

4 Conclusions

The general method that we describe in this report is quite simple. Its utility depends
upon some further investigation of the Physics of the problem and the true trade-off
between minimizing area and t/c. This depends quite a lot on the unknowns η1 and η2,
the values for which we have neglected to include. We have shown some evidence of a
simple tool to balance surface area reduction with having an acceptable value for t/c.

The method that we defined using parameterizations is not useless. In the general
case, however, H is not zero, so a more general variational approach will be needed. Using
Surface Evolver helps to explore what problems are solvable with parameterizations and
which are not. What the results of using the α distortion method have shown is that
under reasonable conditions there is no pinch-off effect, making the problem amenable to
parameterization methods.
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